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1 Introduction

If you’re a bit like me, you get annoyed by the over-simplified explanations of
quantum computers that have been going around since Google demonstrated
quantum supremacy[1]. One of the things that those explanations always gloss
over is how it’s so much harder for a classical computer to simulate a quantum
computer running what is basically linear algebra, than it is for a quantum
computer to just run it. The answer to that is quantum entanglement, and in
this paper I will try to explain how it works.

I should point out that this means either math or meth will be involved in
understanding what I’m about to write. The second option being temporary
for understanding and permanent for negative effects, I recommend the first.

In order to explain why classical computers need exponentially more time
and memory to simulate quantum computers according to the size of the quan-
tum computer (i.e. 2QN bits to simulate Q qubits in 22QT time, so there’s a
linear and an exponential component), I first need to explain a few things about
quantum computers.

First, I’ll explain what a qubit is, how it compares to a classical bit (2).
Second, I will show how we represent qubits in the familiar notation for vectors
from linear algebra, and in a less familiar notation called the Dirac braket no-
tation (3). Third, I will show how operations on classical bits and operations
on qubits compare, and how linear algebra comes into play (4). Fourth, I will
show how to represent a pair of qubits in the vector and Dirac notations, and
show how operations on qubits scale (5). Finally, I will show how quantum en-
tanglement comes into play, showing why those notations were important, and
why a classical computer needs all that extra space and time (6).

1

https://rlc.vlinder.ca/blog/2019/09/29/quantum-supremacy
https://rlc.vlinder.ca/blog/2019/09/29/quantum-supremacy


2 Qubits

Qubits are the basic unit of data storage and manipulation in quantum com-
puters, like classical bits, or cbits are in classical computing. The fundamental
difference between a qubit and a classical bit is the way they behave: a classical
bit can only have a value of 0 or 1. For any other value, they need to be com-
bined with other bits. To encode the value “3”, for example, you need two bits
(both set to 1). To represent the value 1/

√
2 you need a whole bunch of bits

and IEEE Std™ 754-2019.
Qubits don’t hold individual values: they hold a value “somewhere between

0 and 1” with a probability of collapsing to either 0 or 1 when they are measured.
As long as a qubit isn’t measured, it is in a superposition of 0 and 1. The value
the qubit actually has is undecided until it is measured1. The superposition
can be represented as described below, but the value of the qubit is not that
representation. As any model, it is a simplified representation of reality. In this
case, reality may be, for example, the polarization of a photon or the energy
state of an electron.

This got weird in a hurry. That is mostly because nature has been shown
to be fundamentally probabilistic. Quantum computers are a real-world engi-
neering application of the probabilistic nature of the universe, exploiting this
aspect of nature for sheer, raw, computing power.

Fundamentally, you cannot know what the value of any given qubit is at any
time without measuring it, and when you measure it, you’re almost never 100%
sure of the value you’re going to get. What you can know is the probability
that you’re going to get a 0 or a 1 for any given measurement, with a margin
of error, but which one you’re going to get remains purely random.

Mathematically, a qubit may be represented as a vector from the origin to
any point on a unit sphere, so while a classical bit has just the one dimension, a
qubit is a vector in a two-dimensional complex vector space C2 called a Hilbert
space, and can be represented as a vector in a unit sphere, as shown in Figure
1.
A vector is a value that has both a direction and a magnitude. In this case, the
magnitude is always 1, but the direction can be anything.

3 Notation

Any vector in this unit sphere can be represented with the usual notation for
vectors. Remember that in math, you only need two numbers to represent a
two-dimensional complex vector space, even if there are three axes: if you use
complex numbers, which is what we do here, the vector ~q in the image can be

1Proof that the value is, indeed, undecided and not hidden is outside the scope of this
paper. Suffice it to say that this is indeed the case. Exactly why this is the case or how it
works is the subject of much research.
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Figure 1: A qubit, represented as a vector in a unit sphere

represented as:

q =

(
1√
2
e−i

π
6

1√
2
e−i

π
6

)
Note that there is nothing special about this particular vector ~q, but I wanted
it to point out of the page, so I needed a complex component. Any complex
number can be represented as either a real part plus an imaginary part (a+ bi),
or as an amplitude and an angle, reiθ. I chose the second notation here because
it is both more compact and allows me to easily set the amplitude to 1√

2
, thus

keeping my vector’s magnitude at 1.
Another way to represent a qubit is the Dirac braket notation. It’s basically

a shorthand for qubit-typed variables, so our ~q would be noted as:

|q〉 =
1√
2
e−i

π
6 |0〉+

1√
2
e−i

π
6 |1〉

By convention, classical bits are represented in qubits as |0〉 and |1〉, which

correspond, respectively, to

(
1
0

)
and

(
0
1

)
, which gets us to what these numbers

actually mean.

In the vector notation

(
α0

α1

)
, α0 is the probability amplitude if the qubit

collapsing to 0 when measured, and α1 is the probability amplitude of the qubit
collapsing to 1 when it is measured. To find the actual probability, this number
has to be multiplied with its complex conjugate.

The complex conjugate of a complex number p+ qi is p− qi, so multiplying
a number with its own complex conjugate is

(p+ qi)(p− qi) = p2 + pqi− pqi− q2 = p2 − q2
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When written as c = reiθ, the complex conjugate of c is c = re−iθ, which
make the probability, with a probability amplitude of c: cc = reiθre−iθ = r2.

So, for a real number, this means just taking the square of the probability
amplitude to find the probability.

This makes intuitive sense, if you consider that the probability of a qubit
collapsing to 0 must be governed by the projection of the vector of that qubit
onto the X axis, and the probability of it collapsing to 1 must be governed by its
projection onto the Y axis. However, why it maps so cleanly to the probability
is one of the mysteries of nature.

4 Operations on qubits

There are four basic operations one can perform on a single classical bit: set,
clear, identity, and not. The first two operations are inherently destructive,
whereas the second two are not. In this context, being destructive means that
it is impossible to reverse the operation because using only the output you cannot
know what the value of the bit was before the operation.

Classical computing has many destructive operations: the two “universal”
gates2 in classical computing are NAND and NOR, both of which are destructive.

The NAND gate takes two bits as input and outputs a single bit that is set
unless both of the input bits are set. Looking at the truth table for NAND
(Table 1) you can see that three out of the four states have the same output.
It is impossible therefore to reverse this gate, because there is no way to know
which of the three inputs we had if we get an output 1.

a b r
0 0 1
0 1 1
1 0 1
1 1 0

Table 1: Truth table for a classic NAND gate

In quantum computing, there are two destructive operations that can be
performed on a single qubit:clear and measure. The clear operation sets the
qubit to a fixed value of |0〉. Measuring a qubit collapses the quantum super-
position of that qubit and any qubit it is entangled with, and is therefore also
destructive. As useful circuits usually end up entangling many qubits together,
measuring a qubit can collapse the entire system. These are the only destructive
operations, and they’re the only destructive operations we’re allowed to have.

Any operation U performed on a set of qubits must therefore be reversible:
for every U there must be a U† such that I = UU† = U†U . This means that

2Universal gates in this context are logic gates that, when combined with themselves, can
be used to create any other gate, and thus any operation, and thus any function.
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there can be no loss of information for any operation performed on a set of
qubits by a quantum computer.

This does not mean we cannot implement classical operations with quantum
computers: it just means that there’s a bit of work to do to get there, and we
need to keep more state around.

First, the fact that our quantum version of the gate has to be reversible
means we cannot lose any information. It also means we need to have the
same number of inputs as we do outputs. In the case of NAND, this means we
cannot implement it with just two inputs and one output: we need three inputs
and three outputs (looking at the truth table for NAND tells you this). Now,
imagine our three inputs are |a〉, |b〉 and |r〉, and that we can guarantee |r〉 to
be |1〉 on input. We need a gate that flips |r〉 if both |a〉 and |b〉 are true, but
leaves it alone if they aren’t. Now, remember, again, that |a〉 and |b〉 may both
be anywhere between |0〉 and |1〉, we actually need the probability of flipping
|r〉 to be the probability that both |a〉 and |b〉 are true.

This is where we remind ourselves that these are vectors. The way we operate
on vectors is to multiply them with matrices. This allows us to do all kinds of
nifty things to them, such as rotating them around an axis. So, if we can
represent qubits as vectors, we can represent operations on qubits as matrices
that we multiply with those vectors.

Let’s remember how the product of a matrix with a vector works:a b c
d e f
g h i

xy
z

 =

ax+ by + cz
dx+ ey + fz
hx+ hy + iz


Now let’s look at the two simplest operations we can do with a qubit: Identity

and NOT.

I =

(
1 0
0 1

)
NOT =

(
0 1
1 0

)
Applying these two operators to a single qubit we can see how they work:

I |0〉 =

(
1 0
0 1

)(
1
0

)
=

(
1× 1 + 0× 0
0× 1 + 1× 0

)
=

(
1
0

)
= |0〉

I |1〉 =

(
1 0
0 1

)(
0
1

)
=

(
1× 0 + 0× 1
0× 0 + 1× 1

)
=

(
0
1

)
= |1〉

I |ψ〉 =

(
1 0
0 1

)(
α0

α1

)
=

(
1× α0 + 0× α1

0× α0 + 1× α1

)
=

(
α0

α1

)
= |ψ〉

NOT |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0× 1 + 1× 0
1× 1 + 0× 0

)
=

(
0
1

)
= |1〉

NOT |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
0× 0 + 1× 1
1× 0 + 0× 1

)
=

(
1
0

)
= |0〉
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NOT |ψ〉 =

(
0 1
1 0

)(
α0

α1

)
=

(
0× α0 + 1× α1

1× α0 + 0× α1

)
=

(
α1

α0

)
= |ψ′〉

So, applying an operator to a qubit is basically the same as applying a matrix
multiplication to a vector.

As software engineers know, a classical computer can be programmed to do
matrix multiplications in papallel, but as you can see, the matrix is 2× 2 for an
2-dimensional vector, so there are still 22 = 4 multiplications to be done.

These operators, and quite a few others, allow us to work with a single qubit.
The operator we’re looking for needs to allow us to work with three qubits. How
do we do that?

5 More dimensions

The Dirac braket notation can be extended to any number of qubits, pretty
much the same way as we extend binary notation for classical bits. Bits can be
concatenated from right to left, so b0|b1 → b1b0. The decimal value of these bits
is:

2nbn + 2n−1bn−1 + · · ·+ 22b2 + 21b1 + 20b0

We can do the same thing with qubits: two qubits’ states can be combined
into a single notation. So if |ψα〉 = α0 |0〉+α1 |1〉 and |ψβ〉 = β0 |0〉+β1 |1〉, then
|ψαψβ〉 = α0β0 |00〉+ α0β1 |01〉+ α1β0 |10〉+ α1β1 |11〉, so the vector becomes

α0β0
α0β1
α1β0
α1β1


Note that this is a vector in a four-dimensional complex vector space, C4, still
a Hilbert space. Sometimes you’ll see these different (basis) states written as
the α0β0 |0〉+α0β1 |1〉+α1β0 |2〉+α1β1 |3〉, which takes us back to the decimal
notation we know for classical bits as well.

Now look at what this does to any operator Uχ that we might have: if Uα
operates on one qubit and Uβ on another, what does a U look like that operates
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on both? The answer is fairly easy to derive:

Uα |α〉 =

(
a c
b d

)(
α0

α1

)
=

(
aα0 + cα1

bα0 + dα1

)
= |α′〉 (1)

Uβ |β〉 =

(
e g
f h

)(
β0
β1

)
=

(
eβ0 + gβ1
fβ0 + hβ1

)
= |β′〉 (2)

|αβ〉 = α0β0 |0〉+ α0β1 |1〉+ α1β0 |2〉+ α1β1 |3〉
⇒

|α′β′〉 = (aα0 + cα1)(eβ0 + gβ1) |0〉+
(aα0 + cα1)(fβ0 + hβ1) |1〉+
(bα0 + dα1)(eβ0 + gβ1) |2〉+
(bα0 + dα1)(fβ0 + hβ1) |3〉 (3)

Uα ⊗ Uβ =


ae ag ce cg
af ah cf ch
be bg de dg
bf bh df dh

 =

a
(
e g
f h

)
c

(
e g
f h

)
b

(
e g
f h

)
d

(
e g
f h

)
 = U (4)

In step (1), we just get the result of applying an operator Uα to a qubit |α〉. In
step (2), we do the same for an operator Uβ applied to a qubit |β〉. In step (3),
we remind ourselves of what |αβ〉 looks like, and derive from that what |α′β′〉
should look like. Finally in step (4), we extract the matrix that corresponds to U
from what we found in step (3) by applying the matrix in reverse to its outcome.
We show how we would have gotten there using a tensor multiplication, which
this turns out to be.

Note that we now have a four-by-four matrix as an operator to apply to a
four-dimensional complex vector, which implies sixteen parallel multiplications
for any operator applied to two qubits.

When we scale this up to three qubits, we find that we need to make our
vector notations twice as large again:

α0β0γ0
α0β0γ1
α0β1γ0
α0β1γ1
α1β0γ0
α1β0γ1
α1β1γ0
α1β1γ1


⇔ α0β0γ0 |000〉+ α0β0γ1 |001〉+ · · ·+ α1β1γ1 |111〉

The quantum circuit we need to build to implement the equivalent of the
NAND gate needs two input bits and one output bit, which means we need an
eight-dimensional complex vector space, C8 to represent it. The matrix to
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represent it looks like this:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 u00 u01
0 0 0 0 0 0 u10 u00


where uαβ are values that allow us to flip the target (output) qubit according to

the values of the input qubits. [2] uses the notation ∧2
(

0 1
1 0

)
for this matrix.

The gate is called CCNOT, also known as the Toffoli gate, and flips the
output qubit iff both the control bits are set. The schematic for the circuit is
shown below. If we initialize the output bit to |1〉, this effectively implements a
NAND.

|ψ0〉 •
|ψ1〉 •
|1〉

Figure 2: CCNOT Toffoli gate

Note that we now have sixty-four parallel multiplications to do to simulate
this eight-dimensional, three-qubit system.

6 Flavors of entanglement

When we combine two qubits, we can make then share a four-dimensional com-
plex state in such a way that it becomes impossible to represent the two indi-
vidual qubits separately from each other. Consider, for example, the following
state for a pair of qubits:

|ψ〉 =
1√
2
|00〉 1√

2
|11〉

In this state, there’s a 50% chance that both qubits, when measured, collapse
to the 0 state and a 50% chance that they both collapse to the 1 state, but no
chance that they don’t both collapse to the same state! This means that |ψ〉 can
no longer correspond to a state |αβ〉 where the two states can be factored out as
α0β0 |0〉+ α0β1 |1〉+ α1β0 |2〉+ α1β1 |3〉 because it is impossible to find a set of
values {α0,α1,β0,β1} such that α0β0 = 1√

2
∧α1β1 = 1√

2
∧α0β1 = 0∧α1β0 = 0.

Creating this state is not that difficult: we need to apply a gate called the
Hadamard gate to the control bit in a CNOT gate (which is like the CCNOT
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gate, but with fewer dimensions as it only has one control bit). We can apply
this to two unentangled qubits, both initialized to |0〉, to obtain a maximally
entangled pair of qubits:

H =

(
1√
2

1√
2

1√
2
− 1√

2

)
(5)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (6)

H |0〉 =

(
1√
2

1√
2

1√
2
− 1√

2

)(
1
0

)
=

(
1√
2
1√
2

)
= |ψ0〉 (7)

|ψ1〉 = |0〉 ⇒ |ψ〉 = |ψ0ψ1〉 =
1√
2
|00〉+

1√
2
|10〉 =


1√
2

0
1√
2

0

 (8)

CNOT |ψ〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
1√
2

0

 =


1√
2

0
0
1√
2

 = |ψ′〉 (9)

The circuit to implement this looks like this:

|0〉 H •

|0〉

Figure 3: Simple circuit to entangle two qubits

So, while a classical computer could get around implementing NAND using
sixty-four multiplications by assuming the bits are always independent, it can’t
get around implementing its quantum-equivalent CCNOT gate with sixty-four
multiplications, and keeping a state for eight data points, because qubits may
be entangled and can therefore not be assumed to be independent.

7 Conclusion

Needing 2QN bits of memory (where N is a linear factor to allow for representing
complex numbers) to representQ simulated qubits is a conservative lower bound:
it does not account for the memory needed to operate on those qubits and to keep
the operators in memory. Needing 22QT units of time for the multiplications
needed to perform the operations on the qubits is not quite a lower bound:
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though it does not account for any overhead needed for efficient scheduling of
those operations to allow them to run in parallel, for example, it also does
not account for the fact that not all operations run on the entire state of the
quantum computer.

A quantum computer uses the laws of physics that underpin the universe
to perform its operations, however weird the effects of those laws turn out to
be. This means that all those calculations that need to be done by a classical
computer to simulate the quantum computer, are done automatically by nature
in a real quantum computer. Nobody understands quite why or how it works,
but it does seem to work rather nicely.

This is why Google’s quantum supremacy experiment was both important,
and possible: with 53 qubits, a classical computer needs 253N bits of memory,
which is at least (at N = 1) 1,125,899,906,842,624 bytes, or about one petabyte
of memory just to hold the possible values. Google’s quantum computer never
did run operations on all the available qubits at once: it could only run them
on pairs of qubits, though it could run operations on multiple qubits or pairs of
qubits simultaneously. So while the memory requirement would be prohibitive,
the execution time requirement . . . was still prohibitive.

This does not explain why quantum computers can be useful. A hint for
that is provided by Grover’s algorithm, which reduces the search time for an
item in an unsorted list from O(n) to O(

√
n). Another hint may be found

in the quantum computer you already own and carry around with you on a
daily basis: your brain. Biology has a lot to gain from quantum computers,
including the ability to more accurately model biological processes which are
inherently quantum systems. Nature has been using quantum mechanics for
things like photosynthesis since life began. Now that we are harnassing those
same quantum mechanics for computing, we may be able to exploit it to learn
more about nature, medicine, and many other fields.
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